Exercise 9

The portion of a floating iceberg that is below the water surface is much larger than the portion above the surface. The total volume V of an iceberg is modeled by

$$
V=9.5 S
$$

where S is the volume showing above the surface.
(a) Find the total volume of an iceberg if the volume showing above the surface is $4 \mathrm{~km}^{3}$.
(b) Find the volume showing above the surface for an iceberg with total volume $19 \mathrm{~km}^{3}$?

Solution

Part (a)
Plug in the given volume above the surface to the formula to get V, the total volume.

$$
V=9.5\left(4 \mathrm{~km}^{3}\right)=38 \mathrm{~km}^{3}
$$

Part (b)

Since the volume showing above the surface is desired, solve the given formula for S.

$$
V=9.5 S
$$

Divide both sides by 9.5.

$$
S=\frac{V}{9.5}
$$

Plug in the given total volume.

$$
S=\frac{19 \mathrm{~km}^{3}}{9.5}=2 \mathrm{~km}^{3}
$$

Therefore, the volume showing above the surface is $2 \mathrm{~km}^{3}$.

